
Towards an MDE-Based Approach to Test Entity
Reconciliation Applications

J.G. Enríquez1, Raquel Blanco2, F.J. Domínguez-Mayo1, Javier Tuya2, M.J. Escalona1
1Department of Computer and Language Systems, University of Seville, Seville, Spain

2Department of Computing, University of Oviedo, Gijón, Spain

jose.gonzalez@iwt2.org, {rblanco, tuya}@uniovi.es, {fjdominguez, mjescalona}@us.es

ABSTRACT

The management of large volumes of data has given rise to

significant challenges to the entity reconciliation problem (which

refers to combining data from different sources for a unified vision)

due to the fact that the data are becoming more unstructured,

unclean and incomplete, need to be more linked, etc. Testing the

applications that implement the entity reconciliation problem is

crucial to ensure both the correctness of the reconciliation process

and the quality of the reconciled data. In this paper, we present a

first approach, based on MDE, which allows the creation of test

models for the integration testing of entity reconciliation

applications.

CCS Concepts

• Software and its engineering➝Software verification and

validation, Model-driven software engineering • Information

systems➝Entity resolution

Keywords

Entity Reconciliation, Software Testing, Big Data, MDE.

1. INTRODUCTION
Currently, information management is critical in many aspects of

our lives. However, the incorporation of information and

communications technology (ICT) into everyday life causes people

to experience an overload of information, also known by the term

“infoxication”. This term refers to the difficulty that someone has

in understanding a problem and making decisions about it because

of an excess of information [25].

In the first era of ICT, the main problem that researchers had was

how to find information and how to store and manage it efficiently.

Currently, due to the presence of Big Data and cloud computing,

the biggest problem is how to extract knowledge of the information

based on the needs of each user [6]. In this sense, the problem of

reconciling entities takes on a very important role.

Entity reconciliation (also called entity resolution or ER) is a

fundamental problem in data integration. It refers to combining data

from different sources for a unified vision or, in other words,

identifying entities from the digital world that refer to the same real-

world entity. It is an uncertain process because the decision to

allocate a set of records with the same entity, cannot be taken with

certainty, unless these records are identical in all their attributes or

they have a common key [10][21]. This problem can be applied to

many kinds of scenarios. An example of entity reconciliation is

given in Figure 1. At left of the figure, there are two different data

sources with information related to the names of the authors of this

paper. In each data source, the signatures are different, but they are

related to the same authors. Due to the reconciliation of the entities

stored in each data source, we can obtain a simpler model where

the information of each entity is stored in just one database.

While this problem is not new, the management of large volumes

of data presents new challenges and the necessity of carrying out a

high quality reconciliation of entities is growing in the era of Big

Data [6][8]. In [11], the authors expose some of the main challenges

of entity reconciliation in the Big Data environment such as: data

heterogeneity, it is becoming more common that data are

unstructured, unclean or incomplete and also there are diverse data

types; data more linked, where it is expressed the necessity of

inferring relationships; multi-relational data, dealing with the

structure of entities; and building multi-domain systems, trying to

customize methods that span across domains. In the literature it is

possible to find a wide variety of approaches to try to solve the

problem of reconciliation of entities, such as: deterministic rule-

based methods [14][9][2], probabilistic-based methods [24][20][7],

and learning-based [17][5] and graph-based methods[13][21][22].

Due to the important challenges of the ER problem, it is crucial to

test the operations designed to carry out the reconciliations and the

applications that implement them in order to ensure both the

correctness of the reconciliation and the high quality of the

reconciled data.

In this paper, we propose an approach based on the Model-Driven

Engineering (MDE) paradigm for testing applications that

implement ER problems. The approach relies on the ER problem

specification and the conceptual data models of the sources and the

solution to be achieved in order to define test models composed of

a set of business rules, which specify the system requirements.

From these business rules, the situations of interest to be tested (test

requirements) that guide the generation of the test cases can be

automatically derived.

MDE [18] emerged to address the complexity of software systems

and to express the concepts of the problem domain in an effective

way. In this vein, the basic principle of MDE is "Everything is a

model" [1]. The main idea of the MDE is to use a set of models to

decrease the level of abstraction. Thus, in the early stages of

development, models are more abstract than in the final stages

where the models are much closer to implementation. One of the

advantages of MDE is its support for automation, as the models can

be automatically transformed from the early stages of development

to the final stages. Therefore, MDE allows automating the tasks

involved in a software development, such as the testing tasks.

The main contributions of this work are:

 The definition of a framework that includes the integration

testing process into the entity reconciliation process.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

A-TEST’16, November 18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4401-2/16/11...

http://dx.doi.org/10.1145/2994291.2994303

74

 The definition of a test model that represents the testing

objectives as business rules, which can be used to

automatically derive the test requirements.

The remainder of this paper is organized as follow: Section 2

presents the problem approach. Section 3 describes the testing

metamodel for the entity reconciliation, which is still in-progress.

The paper ends with conclusions and a summary of future works.

Figure 1. Entity reconciliation example

2. PROBLEM APPROACH
In a previous work [6], we proposed an approach to address the

problem of reconciliation of entities based on MDE and virtual

graphs technology. The proposal presented in this paper extends the

previous work by adding a new fundamental pillar in the

reconciliation of entities: testing. We aim to ensure the quality of

the entity reconciliation process that is developed.

Graph technology is a natural solution to addressing problems

related to Big Data and especially for the relationships between

entities. The wide variety of existing algorithms, for example:

Dijkstra, A*, Kruskal, etc. offer great flexibility in different

situations. Theoretically, graphs can be displayed in two ways:

explicit and implicit. An explicit graph is a collection of items

(vertexes and edges) that can be stored in memory, which means

that each vertex and each edge of the graph can be completely

stored in memory. An implicit (or virtual) graph is a graph that

cannot be completely stored in memory for various reasons, such

as size or hardware limitations [15].

Thus, a virtual graph is the data structure defined for representing

the information that forms the solution of the entity reconciliation

process. With this technology, we have the possibility of building

the structure on the fly. This lets us build different solutions to

address many scenarios within a business logic where the

predefined data model cannot meet the extensibility or availability

of the required data sources.

Figure 2 depicts the architecture of our proposal, which allows the

user to create models to address the entity reconciliation and to lead

the testing of this process. The four pillars of this architecture are

the following metamodels:

 Virtual Graph metamodel: allows the user to design the

conceptual data model that represents the solution to be

achieved, according to the ER problem domain. This

metamodel is an extended version of a graph metamodel.

 Data Sources metamodel: allows representing the

information of the data sources to be reconciled as well as the

way of accessing them. These sources can be a structured or

unstructured database, a web service, a warehouse or another

information generator.

 Transformations metamodel: represents the different

transformations that the data of the sources must undergo in

order to carry out the entity reconciliation and to be consistent

with the data model of the solution (represented by an

instantiation of the virtual graph metamodel).

 Testing metamodel: allows representing the testing objectives

for the entity reconciliation, such that it can be determined in

the early stages of the development if such reconciliation is

what the user really wants to carry out and if the results

obtained are the expected ones.

Figure 2. Architecture of the proposal

3. TESTING METAMODEL FOR THE

ENTITY RECONCILIATION
Our approach allows the creation of test models for integration

testing, which represent the testing objectives from the entity

reconciliation specification and the conceptual data models of both

the data sources to be reconciled and the solution to be achieved.

These test models are composed of several business rules. The

business rules are statements that define or constrain the business

structure or the business behaviour [12], and have been used in

other approaches focused on testing database applications [3], [23].

The business rules of our approach, called integration rules, impose

conditions on: (1) the structure of the solution, (2) the data that

address the reconciliation process, (3) the data that constitute the

solution, and (4) the business logic of the reconciliation process.

The elements of an integration rule are depicted in the metamodel

of Figure 3.

The data sources to be reconciled and the solution to be achieved

can have different types of entities and several entities of each of

them. For example, in the relational data models, the different types

 Data Source DS1 (Oracle DB):
Type of entities Scientist

Reconciliation

Solution: Type of entities Researcher

Data Source DS2 (Web Service Response):

Type of entities Author

María J.

Escalona
- Acronym: US

F.J.

Domínguez-Mayo
- Acronym: US

Raquel Blanco
- Acronym: UNIOVI

J.G.

Enríquez
- Acronym: US

J. Tuya
- Acronym:

UNIOVI

Javier Tuya
- Organization:

Uni. Oviedo

Jose G.

Enríquez
- Organization:

Uni. Sevilla

M.J.

Escalona
- Organization:

R. Blanco
- Organization:

Uni. Oviedo

M.J.

Escalona
- Institution: US

Javier Tuya
- Institution:

Uni. Oviedo
J.G. Enríquez
- Institution: Uni.

Sevilla

Raquel Blanco
- Institution: Uni.

Oviedo

F.J.

Domínguez-Mayo
- Institution: US

Virtual Graph

Metamodel

Transformations

Metamodel

Data Source

Metamodel

Testing

Metamodel

75

of entities correspond to different tables and the entities of a

specific type correspond to the tuples of a table. In the graph data

models, the different types of entities correspond to different types

of nodes and an entity corresponds to a specific node. When an

integration rule is defined, it is necessary to specify the set of

entities and relationships that are affected by the conditions that the

rule imposes, which constitute its reconciliation scope. This scope

is called integration context and it is represented by the metaclass

IntegrationContext.

In our work-in-progress we distinguish two main types of

integration rules:

 Structural rules (represented by the metaclass Structural)

constrain the structure of the solution to be achieved and

impose conditions to identify the entities and relationships

of the data sources that derive the new entities and

relationships to be included in the solution.

 Load rules (represented by the metaclass Load) establish

conditions to be fulfilled by the attributes of the entities that

constitute the solution, regarding the values of some

specific attributes of the data sources involved in the

reconciliation process. They also can impose pre-

conditions on the attributes of the data source that must be

fulfilled to load new data into the solution.

Figure 3. Testing metamodel

We are working on the definition of several types of structural

rules, considering the structural elements of the solution (entities

and relationships), and also on several types of load rules, taking

into account different patterns that can be used to constrain the

values of the attributes in the solutions and the pre-conditions.

After defining the integration rules that constitute the test model,

test selection criteria can be applied over the conditions imposed by

the integration rules to derive the situations of interest to be tested

(the test requirements). Then, these test requirements are used to

guide the generation of the test cases. To automate these processes,

transformations guided by some test selection criterion and

transformations guided by a test generation technique must be

defined, respectively.

Consider Figure 1 to illustrate the process of defining the

integration rules and deriving the test requirements and the test

cases. The structural rules impose conditions to unify the entities

according to a specific degree of similarity (for example, the

entities “J.G. Enríquez” and “Jose G. Enríquez” are unified into the

entity “J.G. Enríquez”). They also establish conditions to create the

relationships between the entities of the solution, taking into

account the relationships of the data sources that relate the entities

that have been reconciled (for example, the relationship between

“J.G. Enríquez” and “Javier Tuya”).

An example of a load rule written in a language based on the SBVR

specification [16] is depicted in Figure 4. Its goal is to specify the

value of the attribute “Institution” of each entity “Researcher”

included in the solution. Statements 1 to 3 specify the integration

context, which is formed by the paths P1 and P2. These paths

determine the entities of the data sources DS1 and DS2 that have

been reconciled into the entities of the solution (see Table 1).

Statements 4 and 5 specify the prioritization of the attributes

“Organization” and “Acronym” and statement 6 establishes that the

attribute “Institution” of each entity of the solution can only obtain

its value from one of these source attributes.

(1) Path P1 is Solution.Researcher [fsimilarity(Researcher.name,

 Scientist.name)] DS1.Scientist

(2) Path P2 is Solution.Researcher[fsimilarity(Researcher.name,
 Author.name)]DS2.Author

(3) Integration context IC is P1, P2

(4) IC.organization has priority 1
(5) IC.acronym has priority 2

(6) Each IC.institution is only IC.organization or IC.acronym

Figure 4. Example of a load rule

Table 1. Integration context of the load rule

Solution DS1 DS2

Name Name Acronym Name Organization

1
Raquel

Blanco

Raquel

Blanco
UNIOVI R. Blanco Uni. Oviedo

2
M.J.
Escalona

Maria J.
Escalona

US
M.J.
Escalona

3
F.J. Domín-

guez-Mayo

F.J. Domín-

guez-Mayo
US

4
J.G.
Enríquez

J.G.
Enríquez

US
Jose G.
Enríquez

Uni. Sevilla

5 Javier Tuya J. Tuya UNIOVI
Javier

Tuya
Uni. Oviedo

To derive the test requirements from an integration rule, we apply

the MCDC criterion [4] over the conditions imposed by the

integration context and the structural/load rule. This coverage

criterion has demonstrated its utility in previous work, such as [19]

(for testing SQL queries) and [3] (for testing the user-database

interaction). To automatically apply this criterion and check the test

coverage, both integration rules and test requirements can be

transformed into an executable representation [3]. For the example

of Figure 4, some test requirements are:

(1) Both “Organization” and “Acronym” have a value in the

source entities reconciled in an entity of the solution.

(2) “Organization” does not have a value and “Acronym” has

a value in the source entities reconciled in an entity of the

solution.

(3) An entity of the solution has been obtained only from an

entity of DS1 and “Acronym” has a value.

The test case that covers the previous test requirements is composed

of a set of entities stored in the virtual graph that represents the

solution and a set of entities stored in each data source. The entities

shown in the rows 1, 2 and 3 of Table 1 cover the test requirements

1, 2 and 3, respectively. Thus, it is possible to test whether the

application correctly implements the prioritization of the attribute

76

“Organization”. For example, a faulty implementation which does

not consider that the attribute “Acronym” must be used when

“Organization” has a missing value would be detected by the test

case, as its outcome would produce the entities of the virtual graph

“M.J. Escalona” and “F.J. Domínguez-Mayo” without a value in

the attribute “Institution”, instead of the value “US”.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a work-in-progress that aims to

test applications that implement an entity reconciliation problem to

ensure the quality of both the applications and the reconciled data.

The approach allows the creation of test models for integration

testing, taking into account the problem specification and the data

models of the data sources and the solution. These test models are

composed of several business rules, called integration rules, which

can be used to automatically derive the test requirements. Besides,

as the integration rules also describe the business logic of the entity

reconciliation process, they can be used to partially derive the

implementation of the application.

The proposal is based on two main pillars: MDE and virtual graph.

The support of automation of the MDE paradigm allows us to build

very scalable solutions at a low cost, whilst the virtual graphs allow

us to dynamically build the entity reconciliation solution at runtime.

Future work encompasses several avenues. On the one hand, the

definition of different types of structural and load rules, and the

definition of the transformations that automate the process of

deriving the test requirements and the test cases. Furthermore, the

extension of the testing metamodel to cover the unit testing of the

transformations applied over the data to carry out the entity

reconciliation. In addition, the identification of different case

studies to validate the approach. At present, we are working on a

real case study in collaboration with the Andalucian Institute of

Historical Patrimony and Fujitsu Laboratories.

5. ACKNOWLEDGMENTS
This work was supported by projects: PERTEST (TIN2013-46928-

C3-1-R), MeGUS (TIN2013-46928-C3-3-R) and SoftPLM

network (TIN2015-71938-REDT) funded by the Spanish Ministry

of Science and Technology, GRUPIN14-007, funded by the

Principality of Asturias (Spain) and ERDF funds.

6. REFERENCES
[1] Bézivin, J. 2005. On the unification power of models.

Software & Systems Modeling. 4(2), 171-188.

[2] Bhattacharya, I., Getoor, L. 2005. Latent dirichlet allocation

model for entity resolution. In Proc 6th SIAM Int’l Conf. on
Data Mining.

[3] Blanco, R., Tuya, J., Seco, RV. 2012. Test adequacy

evaluation for the user-database interaction: a specification-

based approach. In Proc. 5th International Conference on

Software Testing, Verification and Validation (ICST 2012).

[4] Chilenski, JJ. 2001. An investigation of three forms of the

modified condition decision coverage (MCDC) criterion.

Technical Report DOT/FAA/AR-01/18, U.S. Department of
Transportation, Federal Aviation Administration, April 2001.

[5] Cohen, WW., Richman, J. 2002. Learning to match and

cluster large high-dimensional data sets for data integration.

In Proc. 8th ACM SIGKDD Int’l conf. on Knowledge
discovery and data mining.

[6] Enríquez, JG., Domínguez-Mayo, FJ., Escalona, MJ., García

García, JA., Lee, V., Goto, M. 2015. Entity Identity

Reconciliation based Big Data Federation-A MDE approach.
In Proc. Int’l Conf. on Information Syst. Development.

[7] Fellegi, IP., Sunter AB. 1969. A theory for record linkage.
Journal of American Statistical Assoc. 64(328),1183–1210.

[8] Gal, A. 2014. Tutorial: Uncertain Entity Resolution. VLDB

Endowment, 7(13).

[9] Galhardas, H., Florescu, D., Shasha, E., Simon, E., Saita, C.

2001. Declarative data cleaning: language, model and
algorithms. In Proc. Int'l Conf. on Very Large Databases.

[10] Getoor, L., Machanavajjhala, A. 2012. Entity resolution:

theory, practice & open challenges. VLDB Endowment.
5(12), 2018-2019.

[11] Getoor, L., Machanavajjhala, A. 2013. Entity resolution for

big data. In Proc. 19th ACM SIGKDD Int’l conf. on

Knowledge discovery and data mining.

[12] Hay, D., Healy, K. 2000. Defining Business Rules – what are

they really? Technical Report, The Business Rules Group,
Revision 1.3, July 2000.

[13] Ioannou, E., Nejdl, W., Niederée, C., & Velegrakis, Y. 2010.

On-the-fly entity-aware query processing in the presence of

linkage. VLDB Endowment, 3(1-2), 429-438.

[14] Lee, H., Chang, A., Peirsman, Y., Chambers, N., Surdeanu,

M., Jurafsky, D. 2013. Deterministic coreference resolution

based on entity-centric, precision-ranked rules.
 Computational Linguistics. 39(4), 885-916.

[15] Mondal, J., Deshpande, A. 2012. Managing large dynamic

graphs efficiently. In Proc. ACM SIGMOD Int’l Conf. on

Management of Data. pp. 145-156.

[16] OMG, Semantics of Business Vocabulary and Business

Rules Specification, version 1.3, OMG Document Number:
formal/2015-05-0.

[17] Sarawagi, S., Bhamidipaty, A. 2002. Interactive

deduplication using active learning. In Proc. 8th ACM

SIGKDD Int’l conf. on Knowledge discovery and data

mining.

[18] Schmidt, D. C. 2006. Guest editor's introduction: Model-

driven engineering. Computer. 39(2), 25-31.

[19] Tuya, J., Suárez-Cabal, MJ., de la Riva, C. 2010. Full

predicate coverage for testing SQL database queries.
Software Testing Verification and Reliability. 20(3) 237-288.

[20] Verykios, VS., Moustakides, GV., Elfeky, MG. 2003. A

Bayesian decision model for cost optimal record

matching. The VLDB Journal. 12(1), 28-40.

[21] Wang, F., Wang, H., Li, J., Gao, H. 2013. Graph-based

reference table construction to facilitate entity matching.
Journal of Systems and Software. 86(6), 1679-1688.

[22] Wang, H., Li, J., Gao, H. 2016. Efficient entity resolution

based on subgraph cohesion. Knowledge and Information
Systems. 46(2), 285-314.

[23] Willmor, D., Embury, SM. 2006. Testing the implementation

of business rules using intensional database tests. In Proc.

Testing: Academic & Industrial Conference on Practice and
Research Techniques (TAIC-PART 06).

[24] Winkler, WE. 2002. Methods for record linkage and

bayesian networks. Technical report, Statistical Research
Division, US Census Bureau, Washington, DC.

[25] Yang, CC., Chen, H., Hong, K. 2003. Visualization of large

category map for internet browsing. Decis. Support Syst.

35(1), 89-102.

77

